skip to main content


Search for: All records

Creators/Authors contains: "Chen, L.-J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Numerous structures conducive to magnetic reconnection are frequently observed in the turbulent regions at quasi-parallel shocks. In this work, we use a particle-in-cell simulation to study 3D magnetic reconnection in shock turbulence. We identify and characterize magnetic null points, and focus on reconnection along the separator between them. We identify a reconnection region with strong parallel current, a finite parallel potential, and counterrotating electron flows. Electrons are shown to be accelerated by the parallel electric field before being scattered at the null.

     
    more » « less
  2. Abstract

    We perform a 2.5-dimensional particle-in-cell simulation of a quasi-parallel shock, using parameters for the Earth’s bow shock, to examine electron acceleration and heating due to magnetic reconnection. The shock transition region evolves from the ion-coupled reconnection dominant stage to the electron-only reconnection dominant stage, as time elapses. The electron temperature enhances locally in each reconnection site, and ion-scale magnetic islands generated by ion-coupled reconnection show the most significant enhancement of the electron temperature. The electron energy spectrum shows a power law, with a power-law index around 6. We perform electron trajectory tracing to understand how they are energized. Some electrons interact with multiple electron-only reconnection sties, and Fermi acceleration occurs during multiple reflections. Electrons trapped in ion-scale magnetic islands can be accelerated in another mechanism. Islands move in the shock transition region, and electrons can obtain larger energy from the in-plane electric field than the electric potential in those islands. These newly found energization mechanisms in magnetic islands in the shock can accelerate electrons to energies larger than the achievable energies by the conventional energization due to the parallel electric field and shock drift acceleration. This study based on the selected particle analysis indicates that the maximum energy in the nonthermal electrons is achieved through acceleration in ion-scale islands, and electron-only reconnection accounts for no more than half of the maximum energy, as the lifetime of sub-ion-scale islands produced by electron-only reconnection is several times shorter than that of ion-scale islands.

     
    more » « less
  3. Abstract

    Interactions between solar wind ions and neutral hydrogen atoms in Earth's exosphere can lead to the emission of soft X‐rays. Upcoming missions such as SMILE and LEXI aim to use soft X‐ray imaging to study the global structure of the magnetosphere. Although the magnetosheath and dayside magnetopause can often be driven by kinetic physics, it has typically been omitted from fluid simulations used to predict X‐ray emissions. We study the possible results of soft X‐ray imaging using hybrid simulations under quasi‐radial interplanetary magnetic fields, where ion‐ion instabilities drive ultra‐low frequency foreshock waves, leading to turbulence in the magnetosheath, affecting the dynamics of the cusp and magnetopause. We simulate soft X‐ray emission to determine what may be seen by missions such as LEXI, and evaluate the possibility of identifying kinetic structures. While kinetic structures are visible in high‐cadence imaging, current instruments may not have the time resolution to discern kinetic signals.

     
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. Abstract

    Lower‐hybrid‐drift waves driving vortical flows have recently been discovered in the electron current layer during magnetic reconnection in the terrestrial magnetotail. Yet, spacecraft measurements cannot address how pervasive the waves are. We perform three‐dimensional particle‐in‐cell simulations of guide field reconnection to demonstrate that electron vortices driven by the lower‐hybrid‐drift instability (LHDI) are excited immediately downstream from the electron jet reversal in 3‐D channels of enhanced electron outflow. The resulting fluctuations generate a series of alternating vortices, producing magnetic field perturbations opposing and enhancing the local guide field and causing kinking of the enhanced electron outflow and patches of increased current. Our results demonstrate for the first time that LHDI exists in the electron current layer and enhanced outflow channels, providing a conceptual breakthrough on the LHDI in reconnection.

     
    more » « less